

Unlocking the Potential of Demand Side Management ...for Doubling Energy Efficiency Improvements

14th May 2024 Alliance for an Energy Efficient Economy

Assess the technical potential of demand flexibility for different customers

Questions we explored

- What is the composition of the demand by end-use?
- Which of the end-usages can be flexed or controlled?
- What will be the change in the demand with flexing and for what duration?
- How can the variable generation and behind the meter storage further enable DF?
- What will be the potential of DF upon aggregation (e.g.- feeder)?

Demand Flexibility – A tool for optimizing Electricity Demand

Demand Flexibility- Ability of a customer (Prosumer) to deviate from its normal electricity consumption (production) profile, in response to price signals or market incentives." (Source- EU Smart Grids Task Force)

Different Strategies for Demand Response Implementation

Opportunity for DF Strategies

	Demand flexibility strategies		
Appliance	Shift	Shed	Shimmy
Space Cooling	OFF-ON	OFF	Set-point change
Heavy Plug load	OFF-ON	OFF	NA
Water Pumping	OFF-ON	OFF	NA
Battery Storage	OFF-ON	OFF	Rate of charge and discharge
Refrigeration	NA	OFF	NA
Hot water	OFF-ON	OFF	NA
EV	OFF-ON	OFF	Rate of charging

Residential Electricity

Small Commercial Electricity Consumption (in %)

Industrial Electricity consumption (in %) Textile-spinning

Modelling Framework: Bottom-up Approach

Unit Level Simulation- for Residential Customers (Summer)

DF scenario – PV integration and load shift

DF scenario – PV and Battery integration

Unit Level Simulation- for Small Commercial Customers (Summer)

Unit Level Simulation for Industry: DF scenario – shed

• 10:30 PM to 11:30 PM

BAU peak = 177 Kw, DF Potential = 53 kW

Test Feeder Assumption

Number of customers connected for different categories in Test Feeder

Feeder Level Aggregation (summer)

• Others • Cooling • Fans • Lights • Refrigerator • Commercial

The consumption profile for a typical summer day

DF Scenario – Residential shimmy

DF Scenario – Commercial shimmy

DF Scenario – Hotel shimmy

DF Scenario – Industrial shed

Assess the availability and interest of service providers

Questions we explored

- Which are the potential stakeholder types?
- Who are the market players?
- What is their interest in participation?

Stakeholder Types

Key Points

- **1.** Utility It can be a DISCOM, or load dispatch centers, or transmission companies
- 2. DR service provider Provides specialized solutions (hardware or software technology), or is the system integrator.
- **3.** Aggregators Aggregates demand resources from multiple customer types, such as homes, businesses, EV etc. Aggregator, and DF Service Providers can be different or same entities
- 4. M&V Ideally by an independent agency. This process can also be totally automated obviating the need for a separate entity.
- 5. End customers nudged through monetary or social incentives

- Presence in Indian Market
- Technological Capabilities
- Expertise or Experience in DF
- Innovation and Future Readiness
- Willingness to Invest

Name of company ABB	
AutoGrid	
Bidgely	
Blaze Automation Services Pvt. Ltd.	
Energy Efficiency Services Limited (EESL)	
Flock Energy	
HoneyWell	
HPX	
OhmConnect	
Oracle Utilities	
Power2SME	
PXIL	
RE Connect Energy	
Schneider Electric	
Siemens	
Smart Joules	
Statcraft	
ZedBee Technologies Pvt. Ltd.	

Benefit Cost Analysis- Used for Stakeholder Interactions

Business Model Illustration 1- Investment by Utility

Note: Same business model can also be based on success fee

THANK YOU

37 Link Road, Ground Floor, Lajpat Nagar III, New Delhi, 110 024

+91-11-4123 5600 info@aeee.in | www.aeee.in

Alliance for an Energy Efficient Economy AEEE_India